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Tl~e calculations of Flory and co-workers for the formation and composition of isotropic, bi-phasic and 
anisotropic systems composed of rod-like macromolecules in solution have been extended to include a 
Gaussian distribution of rod-lengths. The critical concentrations for the beginning and end of the bi- 

o. and 0.. respectively, the volume fraction of anisotropic phase ~A, the compositions phasic range vp vp 
and average molecular weights of isotropic and anisotropic phases, and the order parameter S of the 
anisotropic phase are calculated as a function of polymer concentration v°for rod-length x 0 in the range 
30 to 70 and for a Gaussian distribution half-width A, in the range 10 to 70. The extent of the bi-phasic 
range and the composition of the two components is found to be strongly dependent on the breadth of 
the distribution and average rod-length. The applicability of the calculations to data for 
poly(alkylisocyanates) in solution is briefly considered. 

Keywords Macromolecules; chain-length; Gaussian distribution; phase-behaviour; isotropic phase; 
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INTRODUCTION 

In an important series of papers, Flory and co-workers 
have given theoretical treatments of the thermodynamic 
behaviour of rod-like particles in solution 1 -8. In a recent 
series 3-6 they extended the theory to polydisperse 
systems having 'most-probable '5 and Poisson 6 
distributions of chain length. Related treatments have 
recently been given by Dieblieck and Lekkerkerker 9 and 
by Doi 1°. The important feature of such theoretical 
treatments is that it is predicted that as the concentration 
of polymer is increased the system goes sequentially 
through the isotropic phase to a biphasic material, in 
which isotropic and 'anisotropic' phases coexist, to a 
wholly 'anisotropic' phase. Here the 'anisotropic' phase is 
organized in a manner similar to that of a nematic liquid- 
crystal phase. Such phase behaviour is well-known for 
certain polypeptides and aromatic polyamides in solution 
(for key references see ref. 2, refs. 2-8). Whilst the interest 
in lyotropic liquid-crystalline systems composed of rod- 
like molecules such as poly-7-benzyl-L-glutamate goes 
back twenty five years to the classic work of Conmar 
Robinson and co-workers T M  more recent studies of 
aromatic polyamides 13'14 and polyesters 15, which form 
high modulus fibres or thermoplastics have revived 
interest in this class of polymer solutions, and have 
stimulated much current activity. In particular, Aharoni 
and Walsh 16.17 showed that certain 
poly(alkylisocyanates) formed lyotropic liquid-crystal 
materials when dissolved in such solvents as chloroform 
or toluene at polymer concentrations exceeding about 
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15% (w/w). The formation of bi-phasic and lyotropic- 
nematic phases for these polymers was in general accord 
with the predictions of Flory and co-workers, and one 
special feature was the observation of partial 
fractionation of a polydisperse sample between the two 
phases, as predicted by theory 3-6. Aharoni and co- 
workers have made extensive studies of lyotropic and 
thermotropic systems involving poly(alkylios- 
cyanates) 16-23. Since these polymers have extremely 
large electric dipole moments 24, the dielectric technique 
is able to provide a ready means of studying the structure 
and dynamics of their isotropic, bi-phasic and lyotropic- 
nematic solutions• Extensive studies of fairly dilute 
isotropic solutions of the n-butyl, n-hexyl, n-octyl 
isocyanate polymers have been made using 
dielectric2,- 30 and Kerr-electro-optical 29- a t techniques 
and such information as the mean-square dipole moment, 
effective relaxation time, and their dependencies upon 
molecular weight, concentration and temperature, have 
been well documented and explained in molecular terms. 
Quite recently Moscicki and co-workers 32'33 have 
reported studies of the dielectric relaxation of a sample of 
poly(n-hexylisocyanate) and a copolymer of n-butyl and 
n-nonyl isocyanate over a wide range of concentration, in 
toluene, to include isotropic, bi-phasic and lyotropic- 
nematic (anisotropic) phases. It was shown that as the 
polymer concentration cp was increased in the isotropic 
range both the magnitude (Ae) and average relaxation 
time ((z)) increased monotonically, but both quantities 
showed a marked decrease with increasing cp in the bi- 
phasic range, tending to approximately constant values in 
the wholly anisotropic phase. In view of this interesting 
but complicated behaviour it seemed desirable to obtain 
information about the relative amounts of isotropic (I) 
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and anisotropic (A) phases, and their compositions, in the 
bi-phasic range and to estimate the effective polymer 
concentrations at which the bi-phasic material appears 
and terminates. The theory of Flory and co-workers 1 - a is 
ideal for this purpose. Their calculations refer to the 
special cases of the 'most-probable' and Poisson 
distributions of rod-length whose contours are fixed for a 
given average rod-length. For poly(n-butylisocyanate) 
Bur and Fetters 34 found that fractions had approximately 
symmetrical distributions of molecular weight. Thus it 
seemed appropriate to calculate the phase-behaviour of 
rod-like particles in solution using the Flory theory for the 
case of a normal (or Gaussian) distribution of rod-length. 
In addition, it is possible to vary the width of the Gaussian 
curve for a given average rod-length so we may extend the 
work of Flory and co-workers to include the variable of 
polydispersity. A preliminary account of our work has 
been given 35 and its qualitative application to the 
dielectric relaxation behaviour of the butyl-nonyl 
isocyanate copolymer 37 and poly(n-hexylisocyanate) 32'36 
has been considered. The present paper gives the detailed 
account of our extensive calculations for the case of a 
Gaussian distribution of rod-lengths. 

THEORY 

The model is exactly that developed by Flory and his co- 
workers 1-7, and the reader should consult those works, 
especially refs. 4-7 for the case of a distribution of rod- 
lengths. For the present work,* the Gaussian distribution 
leads to the following relation 

n~--p~op =exp(-4(ln 2).[XAX° lZ)-  P(x) (1) 

The superscript '0' indicates here, and throughout, the 
unpartitioned distribution so n o is the number of x-meric 
species in the total volume V and n o is the number of 
solute particles in the volume V. x denotes the number of 
units in a chain and the axis-ratio in that chain a- 6. For 
simplicity the solvent particles are assumed to have unit 
dimension 3 - 6. 

The volume-fraction ratio is given by 

o xn o xP(x) xP(x) 1) x 

,0 ~ <xo - 0 

° Exe( ) xp 
1 1 

(2) 

o and Vp ° are the volume-fraction of x-meric species and of /)x 
total polymer, respectively, in the volume V. 

Let Up and V'p denote the volume-fractions of total solute 
in the isotropic (I) and anisotropic (A) phases, respectively. 
(Primed quantities indicate the A-phase and unprimed 
quantities the I-phase 3-6). Then 

~0 (4) 

From equations (2) and (3) 

~' /)x X 
(5) 

Conservation of the total number of molecules requires 
that 

, U0 Vp (I_OA) Vp - p (I) A , -Jr'- - - Z O  
Xp X p  X p  

(6) 

~p and ~'p are the number-average lengths of solute 
particles in I and A phases respectively. Following Flory 1, 
for equilibrium between I and A phases we must have 

v; 
--=exp(xEq-2/y]) 
Ux 

for species x ~< y (7a) 

--  = exp(r/x) 
U x 

: for speciesx>y (7b) 

y is a disorder parameter 1 defined as y = x sin 0x, where 0x 
is the angle between the order direction and the long axis 
of the rod-like particle, r/is given by 

2 /1 -v 'p \  
r/= - + l n l - - /  (8a) y \ l -vpJ 

o r  

:~R/ --Y 92A 
(8b) 

subscripts 'A' and 'R' distinguish species in 'aligned' and 
'random' states within the anisotropic phase. 

The condition of equilibrium requires that equations (5) 
and (7) to be simultaneously fulfilled and so combination 
and rearrangement lead to the following: 

V'x I xP(x) 
v ~ = ( l -  (I)A)xv°" [ e x p ( x [ ~ - q ] ) +  ~A/(I--~g)]  

: x~<y (9a) 

c 5 _ 1 (yh  z xP(x) 
,o -(1 - ~A).~ ° \eJ [x2(exp( - rlX)] + y2Off(1 - ~A)e 2] Ep 

: x > y  (9b) 

0 *AV'p + (1 -- *A)Vp = Vp (3) 

(I) A is the volume-fraction of the anisotropic phase for a 
given value of v °. Note that (1 -@A) is the volume-fraction 
of the isotropic phase. Also 

* O w i n g  to the large number  of te rms for the model  involved in this 
work,  a Glossa ry  of Terms  is appended.  Fu r the r  in format ion  is given in 
refs. 2 6 

and, by definition 

v, x~<v/,,,\ 1 x~<r 
o = Z 
Up x = l 1)p = 

xP(x) 
](10a) 

[ e x p ( x ( ~ - q ) )  + ~ f f ( 1 - ~ a ) J  
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7"°=vp =>y 7~Vp --(1--OA)~ ° ' ( y - ~ 2 ~  t,e/' x>y 
S =  ~ S x  = 1 -  sin20x 

x > y  \ A/ x > y \  

(16) 

xP(x) 
[x2exp( - fix ) + yZOU(1 - OA)e 2] (10b) 

The number-average length of the rods in the anisotropic 
phase will be 

_, - - , - ,  ( )  

x" = L ,,/(1-oo 

[ J + P(X) -1 

× x =~1 [ exp (x (~  -- r/)) +*A/( 1 --*A)] ( l la)  

In order to calculate quantities useful for the restricted 
small-step angular diffusion of rods, as envisaged in the 
model of Warchol and Vaughan 37 and Wang and 
Pecora 3a we assume that the space available to the rod- 
like particle is restricted to a cone of angle 0 ° about the 
order-direction. The orientation of x-meric species is 
assumed to be randomly distributed within the cone 
giving an average y = x ( s i n  0x). Thus 

0o 

sin 20~dOx 

Y-= <sin 0 , > -  °0 

x f sin OxdO~ 

0 

for the 'random' state and 

_, [ ~  xP(x) 
xa = Lx~y[x2exp(---~+ y2Off (1-  ¢A)e2]J 

Fv P(x) 1-1 
x b ~ , [ x % x p  ( -  rtx) + y2*U(1 - OA)e2]J 

for the 'aligned' state. 
The following equations must also be valid 

( l lb)  

.t t t 
VP--VR ~.~ ~ - ~ +  (12) 
Vp Up Vp 

and 

t t t 

vp _ vR t VA (13) 
2~ 2~ 2~ Thus 

1 0 _ ~[0~ - (1/2)sin 20 °] 
[1 - c o s 0 0 ]  

(17) 

0o 

f sin3OxdO~ 

(sin 2 0 ~ )  = o 
Oo 

f sin OxdO~ 
0 

= ~[2 - (cos0°)(1 + cos0°)] (18) 

This last equation enables £'p to be determined. The 
equilibrium value of y obeys the relation 

VA = [1 -- exp( -- 2/y)]. [1 -- Y/Y(A] - '  (14) 

From equation (6) we may write 

v ° = [{exp((2/y) - q)} - 1]. [{v'pexp((2/y) - rl) - vp}/v °] -~ 
(15) 

This completes the set of equations required to solve the 
problem. 

For a given distribution function P(x) for any value of 
OA in the range 0 to 1 the values of y and q are calculated 
following the basic rules:-- 

(1) For any value of y, the difference between v~ 
calculated from equations (14) and (10b) must be zero 
within a prescribed limit. This is achieved by varying the 
parameter ~/. 

(2) The difference between the current value of y and 
that calculated from equation (8b) must be zero within a 
prescribed limit. This is achieved by varying the current 
value of y, but still fulfilling requirement (1). 

In order to calculate an order parameter useful for 
future applications of this work, we define the nematic 
order parameter S as 

Sx=cosO°(1 +cos  00)/2 (19) 

Equation (17) yields 0 ° for given (y,x) pairs and each value 
can be used in equation (19) to give Sx and ultimately S 
from equation (16). 

All calculations were made using the College 
Honeywell 6080 computer. The accuracy of the values 
obtained from the computer calculations was 10-3s. The 
calculations for step (1) above proceeded until the 
difference between both values of v~ was less than 10 -4, 
whilst for step (2) the difference between the current (or 
trial) value of y and that calculated was less than 10-4 as 
well. The maximum value of x in the distribution given in 
equation (2), i.e. x .... was found independently for each 
case, increasing Xma x until the values of all parameters 
calculated by the procedure became constant, 
independent of Xmax within an accuracy of 10 -4 

Calculations 'A' 
We fix the maximum of P(x) at x o = 50 and vary the 

width of the distribution of rod-lengths by varying AL 
2 

from 10 to 70. The corresponding plots o o of(vx/Vp) against x 
(see equation (2)) are shown in Figure 1. Note that the 
peak in 0 o (vffvp) moves to higher x as AL increases, as 

2 

required by equation (2) since P(x) is multiplied by x. 
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Figure 1 (V°x/~p) against rod-length x for x 0 = 50 and A~ equal to 
10, 20, 30, 40, 50, 60 and 70 

means of symbols placed at the beginning and end of each 
curve. Open symbols denote the isotropic phase and 
closed symbols denote the anisotropic phase. A simple 
example is the data of Figure 5. Each curve is calculated 
for given (x 0, A{). It must be noticed that for the plots of v', 
and vp against v °, all Vp lines (lower curves) start and all v', 
lines (upper curves) finish on a straight line which is the 
diagonal of the corrdinate frame, e.g. in Figure 12 we show 
this as the broken line. This is a consequence of the fact 
that for tp,° ~- Vp°*, where vp°* is the minimum value of v ° for 
the appearance of the anisotropic phase (i.e. the start of 
the bi-phasic range), v p=v ° whilst for v ° > v °**, where 

o** is the value of v ° at the end of the bi-phase range (i.e. /)p 
(I) = 1.0 for v ° >.%o**~j we have vv' = v~,'° independent of the 
values of x o and A{. Thus the isotropic and anisotropic 
phase data obey the equation for the diagonal line with 

_ o . o 0 ,  (20a) Vp -- Vp Vp ~< Vp 

o . o * *  (20b) V p : V  ° " Vp >/Up 

0 3 2  

0 2 8  

0-24 

0"20 
0 

O, lO,  ~ o ,  6 

0.12 

OO8 

0 0 4  

4 0  

5 0  

, i 

0 t6 32 48 64 80  96 112 128 
X 

Figure2 (V0x/~p) aga ins t rod- lengthx forA1 = 30 and x0 equal to 
30, 40, 50, 60 and 70 2 

Calculations ' B' 
We fix AL at 30 and vary the average rod-length by 2 

varying x o from 30 to 70. The plots of(v°/v °) against x are 
shown in Fioure 2. 

Calculations 'C' 
We fix A 1 in proportion to x 0 by setting, as our 

example, A 1 =2Xo/3 and vary Xo from 30 to 70. Plots of E o o (vJvp) against x are shown in Figure 3. 
For these calculations the following quantities have 

been obtained as a function of v °, the volume fraction of 
polymer in the total volume V: @A, v~,, vp, y, S, £~, 2p, 
(Y(p/(X'p>) and (Ycp/<xp>). The results are presented in that 
order for calculations A, B and C. Before discussing the 
results in detail we note the following. 

i - - t  - t  t First, vv and v e, xp and x v, xe/(x  p) and xp/(xp) are 
drawn in pairs on each figure, and are distinguished by 

The distribution functions f~ and f j  (see refs. 1-6) for 
species partitioned into isotropic and anisotropic phases 
are defined as follows 

f~ = (1 - @A)Vx/V ° (21a) 

f ~  t 0 @AVx/V, (21b) 

and of course P(x)=(fx+fj,). These quantities give the 
total amounts of x-meric species in the isotropic and 

o Plots offx and fx will be anisotropic phases for a given vp. o shown for given (Xo, A~_) values as a function of %. 

0 4 8  

0"42 

0 ' 3 6  

0 '30 
0 I 

o,lo.O24 

©-18 

0 .12  

0 . 0 6  

0 2 0  4 0  60  80  I 0 0  120 140 
X 

Figure 3 (V°x/~p) against rod-length x for A1 = (2x0/3) and x 0 
equal to 30, 40, 50, 60 and 70 2 
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°031I 
0 1  , i h i , , , , , , i i 

0"08 0'18 0"28 0"38 0"48 0 58 0"68 078  

0 v a 

Figure4 @A against v~)p for calculations 'A '. Xo=50.  Lineswith 
extrema as o, O, A, 0, ~ , ~  and * correspond to ~ equal to 10, 20, 
30, 40, 50, 60and  70 respectively. Each line gives*the bi-phasic 
range for given (Xo, At)pairs. The symbol at low ~p gives v~* and 
the symbol at higher 2~p gives v~** for that line 

0 8 8  

0 7 8  

0"68 

0"58 

x-Q. 0'48 

0.38 

0.28 

O.IE 

00~ I I I I I i i i I I I i i i I 

0"08 0"18 0 2 8  038  0 4 8  0"58 0-68 0'78 0 8 8  
0 Vp 

5 Vp and V'p against v°o for calculations 'A'. x 0 = 50. Lines Figure 
with extrema as open and filled symbols correspond to isotropic and 

r 

anisotropic phases respectively. The key is as for Figure 4, e.g. the 
data [] [] refer to the isotropic phase in the bi-phasic material for 
~1 = 10 whilst the data ~ ~ refer to the anisotropic phase 
in2the biphasic material for Z~ 1 = 40. Each line gives the bi-phasic 
range for given (x 0 A1) pairs.~The symbol at low v~ thus indicates 
0 *  ' 2 • 0 • • * *  r and the symbolat  higher v~ mducates ~p vh 

R E S U L T S  

Calculations 'A' 
As indicated above these calculations give information 

on the phase behaviour for a system of constant average 
rod-length x 0 but with varying breadth AL of the 

2 

distribution. Figures 4-10 summarize the results. 
In Fioure 4 @A=0 for the isotropic phase range, 

0<~A~<I for the bi-phasic range and ~ A = I  for the 

wholly anisotropic phase range. For AL = 10, (I) A increases 
2 

o> vO, yielding only a narrow range for the rapidly for vp 
bi-phasic material. As AL is successively increased in steps 

2 

o, decreases (ii) that the of 10 to AL = 70 it is seen (i) that vp 
2 

range for the bi-phasic material is remarkably increased 
(iii) that whilst for narrow distributions the plot @A- vs. - 
vp° is approximately linear, for A ~_ large the plot becomes 

90 

8 0  

70 

6O 

i~ ~ 5 0  

4 0  

30 

20 

I0  ~ 
0 0 8  018 0.28 0 3 8  0 4 8  0 5 8  0 6 8  0 7 8  0 8 8  

Figure6 Xp and x-/~ against i~p for calculations 'A'. The lines are 
constructed, and the notation is the same, as for Figure 5. e.g. 
[] [] refers to the isotropic phase in the bi-phasic material for A1 = 
10, whilst • -= refers to the anisotropic phase in the bi-phasic 2 
material for ~1 = 20 

2 

5 2  

4 .0  

v 2-8 

1.6 

1"03 " - - " - "  

1 '09  

^ 

,.2, 

' ' ,  . . . . .  :4 '0.'58' 0 0 8  0 - 8  0 2 8  0 3 8  O 8 O 0 8 0-88 
0 

v,o 

7 (Xp/(Xp)) and (7<~l(x~)) against rC°D for calculations 'A'. Figure 
The lines are constructed as for Figures 5 and 6, so the upper and 
lower data refer to isotropic and anisotropic phases, respectively, in 
the bi-phasic material 
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increasingly curved (iv) there is a value ofv ° at which @A is 
approximately independent of the width of the 
distribution. Figure 5 shows Vp and v'p in the bi-phasic 
range. Note that in the wholly isotropic and wholly 
anisotropic ranges vp and v'p follow equations (20), as 
discussed above. We note that v~,> Vp, as expected from 
the works of Flory 1-6, in the bi-phasic range. As the 
distribution is broadened Vp and v'_ for v ° = v °* decrease, 
the decrease being larger for vp (i.e. (or the isotropic phase). 

" increase with o the For the bi-phasic range vp and vp Vp, 
increase in v'p being much the greater of the two for a given 
A t . Figure 6 shows the number-average quantities 2p and 

2 

9 

8 

7 

6 

~- 5 

4 

3 

2 

I 
0"08 O-18 0"28 0"38 0 4 8  0"58 0"68 078  0 '88 

o g 
P 

8 y against v0n fo r  calculat ions 'A' .  The lines are constructed Figure 
as in Figure 4. e.g. 0 0 corresponds to  &t  = 40 

2 

-, o and A 1. As ,o is increased for Xp as a function of Vp 2 tp 

constant AL both quantities decrease. At the critical value 
2 

o_ .o, 2p_~50 for al l  A~_, since for v v ~ v  p v v - v p  , ,o o,  on the 

isotropic side of the transition from isotropic to bi-phasic 
.,o, we see -o~_ 50. For ,o slightly greater than ~p material Xp Vp 

that 2'p> 50, and increases its value with increasing At. 
2 

This shows that the high molecular weight species in the 
distribution dominate the composition of the anisotropic 
phase within the bi-phasic material when CA is small (see 
Figure 4), and on broadening the distribution selective 
partitioning of the high molecular species into the 

o both 2p anisotropic phase is increased. On increasing vp 
and 2'p fall, the latter falling to ~50 as • h approaches 
unity. In this higher range the low molecular weight 

I 0 0 0  

0 
x 

9 9 2  

9 8 4  

9" 76 

9 6 8  

9 6 0  

9 ' 52  

9 '44 ~ , , A 

0 ' 0 8  0 / 8  0 2 8  
' I ' ' '  ; '  . . . .  

038 0-48 O" 8 0 6 8  078 0'88 
o Vp 

Figure 9 S against v~ fo r  calculations 'A' .  The lines are constructed 
as in Figure 4. e.g. O ~  correspond to At = 20 

2 

f ' \  
/ \ 

i / - ' \  ! \ \ / k 

024 - ; ,  / t  I t 

/ / • , / x / , 

o, / t l  \ o / \  //\ ,/ , 
-:, o,. x / / 

/ V /  0.04 / .A, . /  _ _  \ ",,.# " --- """ --C:o273 
/ J-\ i , +  "---- - - - - .  ,#:o.~o~ 

, , , j - - r - - J t - - - r - - - ~  , , V°:O.132 
0 25 50 75 I 0 0  125 ,o 

x 

Figure 10 fx (cont inuous line) and f x  (broken line) against x for  x 0 = 50, A S = 40. Successive plots f rom left to right refer to  v/~ equal to  
0.132 ( I A  = 0.010),  0.203 (~A  = 0.350),  0.273 (~A  = 0.704),  0.344 (~A  = 0.888) and 0.414 (~A  = 0.990) 

V2 0 4 1 4  

P O L Y M E R ,  1 9 8 2 ,  V o l  23 ,  A p r i l  5 6 3  
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0 -90  

0 7 5  

0 6 0  

O 4 5  

0 3 0  

0-15 

0 i i i i 1 i ~ 1 t i i 

0 '08  0"16 024 0"32 0"40 0'48 0"56 0"64 0-72 
o .p 

Figure 11 4~ A against v~ for calculations 'B'. A~= 30. Lines with 
extrema as ~,<~,A O and [] correspond to x 0 equal to 70, 60, 50, 
40, and 30 respectively. Each line gives the bi-phasic range for 
given (x0, A~) pairs. (c.f. Figure 4) 

species selectively partition into the isotropic phase. 
Figure 6 suggests that if one wishes to extract high 
molecular weight species this is conveniently done by 
separating-off the anisotropic phase for a bi-phasic 

o, whilst low material just above the composition vp 
molecular weight species are conveniently obtained by 
separating off the isotropic phase for a bi-phasic material 
just below the composition v °**. Figure 7 shows'the ratio 
of weight to number average quantities for both phases in 
the bi-phasic material. As v ° is increased for constant A½ 

both (fCp/(Xp)) and (~'p/(X'p)) increase in magnitude, the 
variation being far greater for the isotropic material and 
(~p/(xp)) reaches surprisingly large values. 

Figures 8 and 9 show the quantities y and S which give 
information on the degree of order in the anisotropic 
phase of the bi-phasic material. In Figure 9 the values of S 
are all greater than 0.94 and such high values are 

o increases S characteristic of the Flory model 39. As vp 
shows an initial decrease ('dip') followed by a general 
increase for the remainder of the bi-phasic range. The 
magnitude of the dip increases as A 1 is increased but the 

2 
overall values of S are always increasing with increasing 
A!. The initial behaviour is a consequence of the long- 2 
length tail of the distribution preferentially seeking the 
anisotropic phase for v ° close to vp °* (see also Figure 6 and 
discussion above: also note that (fc'p/(x'p)) is close to unity 
(see Figure 7) showing that the anisotropic phase has a far 
lower polydispersity (and hence higher order) than that 
for the isotropic phase). The partitioning effects for 
calculations 'A' are most readily seen in Figure 10 where fx 
and f ;  are plotted against x for (x o -- 50, A½ = 40) and for 

o (and hence different, but equally spaced, values of vp 
o (and On) are increased the different values of ~a). As vp 

composition of the bi-phasic material transforms from 
essentially isotropic to essentially anisotropic phase. The 
partitioning of the species in terms of molecular weight is 
clearly seen and the correlation with Figures 6 and 7 is 
evident. Curves of the form of Figure 10 have been given 
by Flory and co-workers for the 'most-probable' and 
Poisson distributions. 

Calculations 'B' 
We consider the results for A! fixed at 30 and x 0 varied 

2 

from 30 to 70. Figure 11 shows that ~A-vs.-v ° curves are 
o values and the span of successively displaced to higher vp 

o, and the bi-phasic range is extended as Xo is decreased, vp 
v0** decrease with increasing x0, simply reflecting x o and 

P 

not selective partitioning within the overall distribution, 
which was an important factor for calculation A, Figure 4. 
In Figure 12 the values of vv_ and v'p decrease as x o is 
increased for a given value ofvp °. The partitioning in terms 
of molecular weight is documented in Figure 13. Note 

0_._.~ 0 *  ~ - p  0 _ . . +  0 . *  here that ~2 v (vp Vp )_xp(vp vp )--as illustrated, for 
example, by the * - *  and ~r-cr extrema--as required 
on physical grounds. As x 0 decreases the partitioning 
effect, on the basis of molecular weight, increases. 
Interestingly (fc,/(xp)) values approximate to a single 
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O' 56 J / / /  /~///// 
0 4 8  

0 3 2  ~ 
0 24 
016 
O.OR08 L _ O  Z 0)16 L , J ~ ~ J ~ ~ , , , , , t 094  0"32 0 '40  0'48 0-56 0"64 0"72 
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Figure 12 Vp and v~ against v~ for calculations 'B'. A~ = 30. 
Open and filled symbols refer to isotropic and anisotroplc phases 
respectively. Key is as in Figure 11 (c.f. Figure 5). 
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Figure 13 xp,x~ against v~ for calculations 'B'. The lines are 
constructed, and the notation is the same as for Figure 12 (c.f. 
Figure 6) 
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and (x/~/(x/~>) against v~ for calculations 'B'. Figure 14 (Ep/(Xp) ) 
The lines are constructed, and the notation is the same as for 
Figures 12 and 13 (c.f. Figure 7) 

12"20 
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2-60 
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Vp  

15 y against v0o for calculations 'B'. The lines are construct- Figure 
ed as in Figure 11 (c.f. Figure 8) 

r 

curve (in Figure 14) whilst (x'p/(x'p)) curves are displaced 
as x 0 is decreased. The quantities y and S are shown in 
Figures 15 and 16. Again S shows an initial decrease 
before its rise (c.f. Figure 9). Note that the curves for S 
successively displace to higher values as x 0 is decreased. 
As with Figure 9, this results from the partitioning of high 
molecular weight species into the anisotropic phase. 

Calculations 'C'  
These are complementary to calculations 'B' only now 

the half-width of the Gaussian is in fixed proportion to Xo, 
being A~ = 2Xo/3. As is seen in Figures 2 and 3 the volume 

fraction distribution functions for the two cases are very 
different, the higher Xo is in case 'B', the broader is the 
curve. As before the curves of (I)A Figure 17 displace to 
higher v ° values as Xo is decreased and are to be compared 
with those in Figure 11. In Figure 17 the near parallel 

curves reflect AL increasing with x0 thus maintaining the 
2 

span of the bi-phasic range whereas in Figure 11 the 
transition range narrows with increasing Xo. Figures 18 
and 12 and Figures 19 and 13 may be compared and note 
that the differences between ~'p and ffp are much higher for 
'B' than for (C). Comparing Figures 20 and 14 note that in 
Figure 20 whilst all (~'p/(x'p)) values are close to unity, 
there is a significant decrease in (2p/(xp)) on going from 
Figures 14 to 20. This means that there is a decrease in the 
tendency to partially fractionate the high molecular 

o close to weight species into the anisotropic phase for vp 
vp°*. Figures 21 and 22 show y and S, and comparing 
Figure 22 with Figure 16 generally similar curves are 
obtained. Finally Figure 23 shows fx andf~ against x for 
equally spaced intervals of v °, for Xo = 70, A½ = 2Xo/3 in 
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Vp 

16 S against rOD for calculations 'B'. The lines Figure are con- 
structed as in Figure 11 (c.f. Figure 9) 
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Figure 17 @A against v~ for calculations 'C'. & ~ =  2x0/3. Lines 
with extrema as # ,  0 ,  A, O, E] correspond to x o equal to 70, 60, 50, 
40, and 30 respectively. Each line gives the bi-phasic range for given 
(Xe, A~ ) pairs. (c.f. Figures 4 and 11) 
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Figure 18 Vp and v~ against v~ for calculations "C'. & l  = 2Xo/3. 
Open and filled symbols correspond to isotropic and "anisotropic 
phases respectively. Key as in Figure 17 (c.f. Figures 5 and 12) 

9O 

7O 

;,< 60 

'~'~ 50 

2 0  ' ' ' ' 
0 0 8  0"14 0"20 0"26 0 3 2  0"38 0 4 4  0"50  0 '56  

0 v# 

Figure 19 ~p x~ against v 0 for calculations 'C' & ~ = 2x013 t ,O • • 

The lines are constructed as for Figure 18 (c.f. Figur#s 6 and 13) 

the range where OA increases from 0.01 to 0.99 (see Fioure 
17). As in Figure 10 we observe the partitioning of species 
into isotropic and anisotropic phases on the basis of 
molecular weight and we see how the relative amounts 

(~',fJ,/~,fx], and their average molecular weights (see 
\ 

also 
X X / 

/ 

o (or ¢ ~  Figures 19 and 20), for the two phases vary with vp 
in the bi-phasic range. 

DISCUSSION 

The present work complements the earlier work of Flory 
and co-workers for polydisperse systems 3-6 and 
investigates the variations in the derived quantities OA, 
vpO*, "p" 0 . . ,  fx, f'; Vp, Vp; average molecular weights and the 
order parameter S as the width of the distribution (A 1) and 

x o are varied. The effects of varying AL are remarkable 
2 

and have been discussed in detail above. Further 
interpretations of the curves of Figures 4-23 could be 
made but most are self-evident to the reader and thus will 
not be further discussed. The tabulations of these and 
other calculations we have made for the Gaussian 
distribution may be made available on request to the 
authors, as is the programme for the calculations. The 
question that arises is to what extent may the above 
calculations be applicable to our recent experimental 
dielectric data 32'aa'a6 for poly(alkylisocyanates) and the 
viscosity, phase behaviour and thermal data for those 
systems by Aharoni and co-workers 16-19? 

It appears that the poly(alkylisocyanates) are rod-like 
for Mw< 105, as evidenced by a whole range of physical 
studies 24-31'4°, but the chains are worm-like or act as 
broken rods with large persistence length at the highest 
molecular weights 24- 31.4o. Thus application of the Flory 
model is likely to be most successful for Mw< 105 and 
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20 (-Xp/(Xp)) and (x~/(x~)) against v~ for calculations 'C'. Figure 
The lines are constructed as for Figures 18 and 19 (c.f. Figures 7 
and 14) 
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2t v against v~ for calculations 'O'. The lines Figure are con- 
structed as for Figure 17 (c.f. Figures 8 and 15) 
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generalization of the theory to include the broken rods, as 
has been attempted by Flory v, seems desirable for high 
molecular weights. Another important aspect is that the 
Flory model as considered by Flory for polydisperse 
systems 3-6 and by us here, is derived for athermal 
solutions: i.e. on the basis of entropy considerations and 
not including interactions between particles. Since the 
poly(alkylisocyanates) in solution would be expected to 
interact via their large dipole moments, the athermal 
approximation may not be adequate, although one would 
expect the thermal terms to be of considerably smaller 
magnitude than in, say, polyamide/polar solvent systems 
where specific interactions (e.g. hydrogen bonding) will be 
important and will make a substantial contribution to the 
free energy. 

Notwithstanding the reservations expressed above, it is 
clear from the predictions of the model and the 

0 
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Figure 22 S against v~ for  calculat ions 'C'. The lines are con- 
structed as for Figure 17 (c.f. Figures 9 and 16) 

experimental observations of the phase-behaviour and 
the physical properties of the isotropic, bi-phasic and 
anisotropic phases of the poly(alkylisocyanates) in non- 
polar solvents 16-23'32'33'36'4° that the essential 
experimental features are rationalized, at least semi- 
quantitatively, by the Flory theory if a distribution of 
molecular weight is taken into account. We are therefore 
currently undertaking a simulation of the dielectric 
properties of a poly(n-hexylisocyanate) in toluene 
solution extending over the isotropic, bi-phasic and 
anisotropic phases using the results of the model 
calculations given above, together with the known 
dielectric properties of the isolated chain as a function of 
molecular weight 24 30, and a model of motions in the 
anisotropic phase due to Warchol and Vaughan 3v and 
Wang and Pecora 3s. In the latter case it is considered that 
a rigid dipolar molecule may reorient freely (by small-step 
diffusion) in a cone described by the polar angle 0 °. It 
follows 37'3s that the mean-square dipole moment <p2) 
and the effective relaxation time (~) have smaller values 
for a motion in a cone than for isotropic diffusion into 4~ 
solid angle and this rationalizes the observation 32'33'36 of 
the fall in static permittivity (to) and the increase in the 
frequency of maximum loss (fro) on going from 
isotropic--,bi-phasic~anisotropic phase. Values of 0 ° 
may be inferred from the model calculations described 
above so it is possible to simulate the dielectric behaviour 
under athermal conditions for rod-like chains. It remains 
to be seen if this simulation accounts for the essential 
features of the observed dielectric behaviour a2'33'36 but 
qualitative differences should provide further insight into 
the structure and dynamics of the biphasic and 
anisotropic phases of poly(alkylisocyanate)/solvent 
systems. 
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G L O S S A R Y  O F  T E R M S  

Ae diolectric increment  across the dipole 
relaxation region. 

(z> average dielectric relaxat ion time. 
( z )  =(2rtf=)-1 where f= is the frequency of 
m a x i m u m  loss. 

% po lymer  concentra t ion  (wt po lymer / to ta l  
weight). 

nx,%° o number  of  x-meric  species (n °) in the total  
number  (n o ) of po lymer  species in the 
unpar t i t ioned system. 

o o vx,vp,V volume fraction of x-meric  species (v °) and 
volume fraction of all po lymer  species (v °) in 
volume V of the unpar t i t ioned system. 

A1 Gauss ian  curve half-width (see equat ion  (1)). 

vp, v'p vo lume fractions of  po lymer  solute in 
isotropic phase (vp) and anisotropic  phase  (v~,) 
of bi-phasic material .  

~A volume fraction of anisotropic  phase  in 
volume V of bi-phasic material .  

vx, Vx volume fractions of  x-meric  solute in isotropic 
phase  (vx) and anisotropic  phase  (Vx) of bi- 
phasic material .  

xp-° number  average molecular  length of po lymer  
in the unpar t i t ioned system (see equat ion (2)). 

£p, ~ ,  number  average molecular  length of po lymer  
in the isotropic phase  (unprimed) and 
anisotropic  phase (primed) of  the bi-phasic 
material ,  respectively. 

r/, y see equat ion  (7) and refs. 2 -6  
V'A,V'R,£'A volume fractions and number  average. 
£~ molecular  length of po lymer  solute in the 

'al igned'  (A) and ' r a n d o m '  (R) parts  of the 
anisotropic  phase (hence the prime). 

0x y = x sin 0~; see equat ion (7): see also equat ion  
(17). 

S order  pa rame te r  for the anisotropic  phase  in 
the bi-phasic material .  

(xp>, (x'p> weight average molecular  length of po lymer  
in the isotropic phase (unprimed) and 
anisotropic  phase  (primed) of  the bi-phasic 
mater ia l  respectively. 

Vp°*, up-°** volume fractions of  the po lymer  at the 
beginning (*) and end (**) of  the bi-phasic 
range. 

f~, f~ distr ibution functions for x-meric  species in 
the isotropic (unprimed) and anisotropic  
(primed) phases of  the bi-phasic mater ia l  (see 
equat ion (21)). 
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